
Incremental Plan Aggregation for Generating Policies in
MDPs∗

Florent
Teichteil-Königsbuch

ONERA-DCSD
Toulouse Cedex 4, France

Florent.Teichteil@onera.fr

Ugur Kuter
University of Maryland

College Park, MD 20742, USA
ukuter@cs.umd.edu

Guillaume Infantes
ONERA-DCSD

Toulouse Cedex 4, France
Guillaume.Infantes@onera.fr

ABSTRACT
Despite the recent advances in planning with MDPs, the problem
of generating good policies is still hard. This paper describes a way
to generate policies in MDPs by (1) determinizing the given MDP
model into a classical planning problem; (2) building partial poli-
cies off-line by producing solution plans to the classical planning
problem and incrementally aggregating them into a policy, and (3)
using sequential Monte-Carlo (MC) simulations of the partial poli-
cies before execution, in order to assess the probability of replan-
ning for a policy during execution. The objective of this approach
is to quickly generate policies whose probability of replanning is
low and below a given threshold.

We describe our planner RFF, which incorporates the above
ideas. We present theorems showing the termination, soundness
and completeness properties of RFF. RFF was the winner of the
fully-observable probabilistic track in the 2008 International Plan-
ning Competition (IPC-08). In addition to our analyses of the IPC-
08 results, we analyzed RFF’s performance with different plan ag-
gregation and determinization strategies, with varying amount of
MC sampling, and with varying threshold values for probability of
replanning. The results of these experiments revealed how they im-
pact the time performance of RFF to generate solution policies and
the quality of those solution policies (i.e., the average accumulated
reward gathered from the execution of the policies).

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]: Plan ex-
ecution, formation, and generation

General Terms
Algorithms

Keywords
Planning (Single- and Multi-Agent)

∗
This research was supported in part by the French Délégation

Générale pour l’Armement grant 07.60.031.00.470.75.01, US AFOSR
grant FA95500610405, and US ARO grant W911NF0920072. The opin-
ions in this paper are those of the authors and do not necessarily reflect
those of the funders.

Cite as: Incremental Plan Aggregation for Generating Policies in MDPs,
F. Teichteil-Königsbuch, U. Kuter, and G. Infantes, Proc. of 9th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS 2010), van
der Hoek, Kaminka, Lespérance, Luck and Sen (eds.), May, 10–14, 2010,
Toronto, Canada, pp.�
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. MOTIVATIONS
In planning under uncertainty, the best known formalism is

Markov Decision Processes (MDPs). Despite the general applica-
bility and mathematical soundness of MDPs, the problem of plan-
ning with MDPs is still often computationally challenging, even in
simple toy planning domains. This is due to the fact that most ex-
isting MDP planning algorithms try to optimize exactly large parts
of the policy at once. This typically induces the requirement of
enumerating the entire state and/or action spaces during planning.

There has been great strides in MDP planning over the years.
Examples include techniques on state abstractions and aggrega-
tions [6, 2, 8], value function approximations [5, 16], heuristic and
greedy search [1, 9, 12], policy-gradient computations [4], and gen-
eralizations of planning formalisms and algorithms developed orig-
inally for deterministic planning domains [13].

The most recent success in MDP planning is due to determiniza-
tion and replanning techniques as evidenced by the works [17, 18].
The basis of these approaches is to take an MDP planning prob-
lem and “determinize” it into a classical planning problem and to
generate a sequence of action (i.e., a plan) that represents a possi-
ble execution path in a potential solution policy. The MDP planner
then executes this plan: if the goals are achieved then the algorithm
reports success; otherwise, the algorithm re-generates (i.e., replan)
a new plan from the failed state of the world.

Although this approach has been demonstrated to be practical
in various MDP planning benchmarks, existing planners terminate
just after having computed the first deterministic path to a goal
state, which is typically likely to fail. Thus, the planner needs to
generate and execute many plans to reach to the goal. This may re-
sult in the generation of the same plan over and over again to fail –
although the current planners incorporate heuristic techniques that
may avoid such situations. Furthermore, as a result of the above
approach, the planner does not generate a policy; only an execution
path from an initial state of an MDP to a goal state.

Most realistic scenarios, such as search and rescue [15], require
that an MDP planner quickly generate offline policies that have
some guarantees for not failing. If a failure still occurs during exe-
cution, then the planner could take a replanning approach as above
in order to update its previous policy to circumvent the failure.

2. OVERVIEW
We identified four aspects of policy generation for MDP plan-

ning problems using a classical planning algorithm: (1) how to de-
terminize the MDP planning problem; (2) which plan (initial state
and goal) to ask for (3) how to incrementally aggregate the plans
generated by the classical planner into a solution policy for the
MDP; (4) how to combine all of the above coherently.

This paper presents our contributions on the four aspects of MDP

1231

1231-1238

planning via plan aggregation. In particular, we describe:

• the Robust FF (RFF) planning algorithm that generates a policy
for an MDP planning problem via well-informed calls to a clas-
sical planner on determinizations of the MDP. For generating
classical plans, RFF uses the well-known FF planner [11].

• two MDP determinization mechanisms for RFF. These mecha-
nisms are similar to the determinization techniques proposed by
the works mentioned above [17, 18].

• a suite of policy-generation strategies for RFF selecting the start-
ing states and the goals for generating plans via FF for an MDP
planning problem. Both involves reasoning about the current
policy and the likelihood about its successful execution towards
achieving the original goals of the MDP.

• a suite of strategies for aggregating deterministic plans into a
policy. These strategies specify different ways to combine the
plans back into a policy for the original MDP, and to use Monte-
Carlo simulations in order to compute, during planning time, the
probability of replanning in case the execution of the policy fails.
The planning agent then uses this probability value to decide
whether (and how) to expand the policy further, or to execute it.

• theorems showing that RFF terminates in finite time, it is sound,
and conditionally complete given the particular determinization
strategy it uses. Finally, we show that if there are unsolvable
states (i.e., have no path to a goal state), RFF’s probability of
replanning is complementary to its probability of success, i.e.
reaching to a goal state, so that the probability of success of the
aggregated policy is implicitly controlled by RFF.

• an extensive experimental evaluation of RFF. RFF was the win-
ner of the 2008 International Planning Competition (IPC-08),
the fully-observable probabilistic track. We report the IPC-08
results comparing RFF’s performance with several other state-
of-the-art planners. In additional experiments, we evaluated (1)
different ways of selecting goal state(s) when the planning agent
invokes FF; (2) different strategies for generating determinis-
tic relaxations of an input MDP; and (3) the effects of varying
thresholds on the probability of replanning.

3. DEFINITIONS AND NOTATION
Our definitions and notations are adapted from the usual MDP

formulation of planning problems as in [7].
We consider MDPs of the form M = (S,A, app, P r, R). S

and A are the finite sets of states and actions. app(s) is the set of
all actions applicable in s. For every a ∈ app(s), Pr(s, a, s′) is
the probability of the state transition (s, a, s′). For every s ∈ S,
s′ ∈ S and a ∈ app(s), R(s, a, s′) is the reward of applying a to
s and generating s′.

An MDP planning problem is a triple P = (M, s0, G, ρ), where
M = (S, A, app, P r, R) is an MDP, s0 ∈ S is the initial state1,
G ⊆ S is the set of goal states, and 0 < ρ ≤ 1 is a probability
threshold as described below.

We say that a state s in an MDP problem P = (M, s0, G, ρ) is
unsolvable in M if there is no path from s to a goal in G. We define
succ(s, a) = {s′ | Pr(s, a, s′) > 0} if a ∈ app(s); succ(s, a) =
∅ otherwise. We let succ(s, A) denote the set of successors of s
given the actions in A:

S

a∈A succ(s, a).
A policy is a partial function π : Sπ → A for some set Sπ ⊆ S.

The size of π is |Sπ|. Vπ(s), the value of s induced by the policy

1
By assuming a single initial state, we are not loosing any generality; one

can define a special action that is only applicable in s0 and generates only
the states in a desired set of initial states with uniform probability.

π, is defined as: Vπ(s) = E
ˆP+∞

t=0
γtrt | st0 = s, π

˜
, where γ ∈

[0, 1] is the discount factor and rt is the reward gathered at time
step t if we start from s at time t0. The optimal policy for an MDP
problem is the one that maximizes Vπ(s) for each state s in π.

π’s execution structure is a directed graph Σπ representing all
possible executions of π. Formally, Σπ = (Nπ, Eπ), where Nπ =
Sπ∪{succ(s, app(s)) | s ∈ Sπ} and Eπ = {(s, s′) | s ∈ Sπ, s′ ∈
succ(s, app(s))}. A state s is expanded in Σπ , if app(s) �= ∅ and
∃(s, s′) ∈ Eπ : ∀s′ ∈ succ(s, app(s)). The state s is terminal in
Σπ , if there is no s′ such that (s, s′) ∈ Eπ and s is not a goal state.

Let Πk be the set of all finite paths of length k in Σπ such that
each path p ∈ Πk starts at the initial state and ends in a terminal
state s. Then, when π is executed, the probability of replanning in
s is given by the following formula:

ω(s0, π, s) =

+∞X

k=0

X

〈(s0,a0)...(sk,ak)〉∈Πk

Y

i=0...k

Pr(si, π(si), si+1),

where Pr(s, a, s′) is the probability of the transition (s, a, s′).
Let T = {all terminal states in Σπ}. Then, the probabil-

ity of replanning when π is executed in s0 is: Ω(s0, π) =
P

s∈T ω(s0, π, s). The above probability value can be efficiently
assessed by computing the successive probabilities Pt(T | s, π) of
reaching some terminal states in T from s in t steps2:

P0(T | s, π) =

j
1, if s ∈ T,
0, otherwise

Pt(T | s, π) =
X

s′∈succ(s,π(s))

P (s, π(s), s′) Pt−1(T | s′, π)

The replanning probability is: Ω(s0, π) = limt→+∞ Pt(T | s0, π)
The rationale behind computing the probability of replanning of

π in terms of the probabilities of reaching to a terminal state of π,
when π is executed in its initial state is as follows. Suppose that π
has no terminal states – i.e. all states in which π does not specify
an action are goal states. Then the execution of π is guaranteed
to reach to a goal despite the uncertainty in the action outcomes.
Now suppose π has only one terminal state s. In this case, if the
execution of π reaches s, then this is a failure since π does not
specify what action to execute in s. Thus, the planning agent must
replan for this state and hence the probability of replanning is equal
to the probability of reaching to s when π is executed.

Note that the probability of replanning is generally not comple-
mentary of the probability of reaching a goal state, because the ex-
ecution can lead as well to terminal states and absorbing expanded
states from which it is impossible to reach the goals. In Section 5,
we show the conditions under which the probability of replanning
would be complementary to the probability of reaching a goal state.

Finally, a solution for an MDP planning problem P =
(M, s0, G, ρ) is a policy such that Ω(s0, π) < ρ.

4. ROBUST FF (RFF)
Figure 1 gives a high-level illustration of how RFF would pro-

ceed given an MDP planning problem. Given an MDP planning
problem (M, s0, G, ρ), RFF first generates an initial plan p from
the initial state to some goal state by using FF on a determinization
of the MDP. Then, RFF aggregates the original (i.e., MDP) ver-
sions of actions in p, and the states induced by the succ function
over those actions into the current partial policy π.

The execution of p may fail with a high probability in the sense
that it may lead to a terminal state of Σπ . In each terminal state s

2
This is a special case of probabilistic dynamic programming with γ = 1

and where all rewards are 0 but 1 when arriving in a terminal state.

1232

I

G

I

G

I

G

initial graph: I,G initial call to FF Add probabilistic outcomes to previous
terminal states

I

G

I

G

II

GG

II

GG

I

G

I

G

I

G

I

G

Shortest stochastic path on expanded
nodes (optional)

Compute probability to reach a terminal
state by Monte-Carlo sampling

Call FF on terminal states

Figure 1: An overview of planning in RFF.

Algorithm 1: RFF(M, s0, G, ρ, N)

D ← a deterministic relaxation of M1
T ← {s0}; π ← ∅; ω(s0, π, s0)← 12
repeat3

T ′ ← ∅ // new terminal states4
X ← ∅ // new expanded states5
for s ∈ T such that ω(s0, π, s) > ρ do6

pick GFF ⊆ G ∪ Sπ7
p← FF(D, s, GFF)8
if p �= failure then9

s′ ← s; let p = 〈â1, . . . , âk〉10
for 1 � i � k do11

X ← X ∪ {s′}12
π(s′)← ai13
T ′ ← T ′ ∪ succ(s′, ai) \ (Sπ ∪G)14
s′ ← succD(s′, âi)15

else X ← X ∪ {s}16
T ← (T \X) ∪ T ′17
{ω(s0, π, s) | s ∈ T)} ← Fail_Prob(s0, π, T, N)18
Ω(s0, π) =

P

s∈T ω(s0, π, s)19
// Next line is optional
Optimize the shortest stochastic path in Sπ by considering all20
states in T as if they were unsolvable

until Ω(s0, π) � ρ or T = ∅21
if π �= ∅ then return π22
else return failure23

reachable with a probability higher than ρ, compute a new path to
a goal state from s by using again the classical planner. We discuss
how to choose the next goal state (or states) for FF below.

Optionally, we can compute the shortest stochastic path from the
initial state to the goal states with a very high cost on terminal states
(this optional step is costly but it incrementally expands the policy
around the execution paths that reach from the initial state to a goal.

Finally, RFF selects a terminal state in the execution structure
induced by the aggregated policy and repeat the above steps. This
iterative process terminates as soon as the probability to reach a
terminal state from the initial state with the current policy is less
than the threshold ρ.

Algorithm 1 shows the pseudo-code for RFF. We are now ready
to describe the details of the operations in the algorithm.

Generating Deterministic Relaxations of MDPs.
In Lines 1 and 2, RFF generates a deterministic relaxation of the

input MDP. The initial policy π is the empty policy, and the only

terminal state is the initial state (since it has not been expanded yet).
There are several known strategies for generating a deterministic

relaxation of an MDP: see [17] for a review of some of them. In
RFF, we primarily used a technique that generates a deterministic
relaxation D of the input MDP as follows: for each action a in the
MDP, D includes one and only action â such that â is applicable
in exactly the same states as a and â has the most probable out-
come of a as its only effect. Note that the above determinization
strategy is appropriate to our approach because RFF seeks to min-
imize path execution failure during execution due to least probable
outcomes. We call this strategy the MOSTPROBABLEOUTCOME

(MPO) relaxation of the MDP.
Another strategy we used in RFF for generating a deterministic

relaxation of the MDP is the following: for each action a in the
MDP, D includes one action â for each possible effect of a such that
â is applicable in exactly the same states as a. We call this strategy
as the ALLOUTCOMES (AO) relaxation of the MDP. Note that the
AO relaxation of an MDP is useful in planning domains where the
goal is not reachable using only the most probable outcomes.

In Line 15 of Algorithm 1, the function succD(s, â) specifies the
successor states when the deterministic action â is applied in s.

Expanding the Execution Structure Σπ.
At each iteration, RFF attempts to expand the execution structure

Σπ by planning one or more actions for each terminal state in Σπ .
For each terminal state s in Σπ such that the probability to reach
s while executing the policy is higher than a given threshold (see
Line 6), RFF first selects one or more goal states, GFF in Line 7,
and then calls FF in order to generate a plan from the terminal state
s to any goal in GFF. If FF returns a failure then this means that s is
unsolvable in the determinized domain. In that case, Lines 11–15
are not executed. Instead, Line 16 is executed in order to avoid
to consider the current terminal state as unexpanded at the next
iteration. This line is coherent with the probability of replanning
and prevents the planner to replan from an unsolvable state.

Choosing a terminal state in π as an initial state for FF. As
mentioned above, RFF calls FF in the state s that is a terminal
state in the current policy π’s execution structure Σπ such that the
probability of reaching to s from the initial state s0 of the input
MDP planning problem, i.e., ω(s0, π, s) in Line 6, is greater to the
input threshold probability ρ.

In Lines 18 and 19 of Algorithm 1, RFF computes the probability
that a policy π will fail when executed from a state s. As we defined
earlier, the probability to reach any terminal state from the initial

1233

Algorithm 2: Fail_Prob(s0, π, T, N)

for s ∈ T do ω(s0, π, s)← 01
for 1 � i � N do2

s← s03
while s �∈ G or s �∈ T do4

sample the next state s′ given s and Σπ5
s← s′6

if s ∈ T then ω(s0, π, s)← ω(s0, π, s) + 1
N7

state s0 is: limt→+∞ Pt(T | s0, π), where Pt(T | s0, π) is the
probability to reach in t steps a terminal state in T starting from s0.

Nevertheless, this computation may be quite costly. Thus, in
RFF, we assess this probability computation by means of sequen-
tial Monte-Carlo (MC) simulations: We perform N stochastic sim-
ulations in the MDP M starting from the state s given the policy
π and generate N trajectories which all start from the initial state,
and which end each as soon as a terminal state is reached or af-
ter a given depth. The probability to reach some terminal state is
approximately the ratio between the number of trajectories which
reach a terminal state and N .

The sequential MC simulation procedure Fail_Prob that we
used in RFF is shown in Algorithm 2. Fail_Prob computes the
probability to reach each terminal state. In Line 5, an outcome
of a state s by applying the current policy in s, is generated by
sampling the outcomes of s in the execution structure Σπ . Each
time a terminal state is reached, the routine exits the loop in Lines
4–6, and the weight of the reached terminal state increases by 1/N
(Line 7). This procedure returns an array of size |T | containing the
probability failures ω(s0, π, s) for all s in T .

The probability of replanning is then given by the sum of the
probabilities ω(s0, π, s) for all s in the set T of terminal states of
the execution structure (Line 19).

Choosing the goal states for FF. There are several possibilities for
defining the goals GFF that RFF passes to FF at each iteration. A
straightforward possibility is always to call FFwith the goals of the
input MDP planning problem. We name this simple strategy as PG
(short for PROBLEMGOALS) for “goals of the input problem.”

Although this strategy’s implementation is simple, it often re-
sults in computing several times the same subpaths. To avoid this
drawback, we also developed two other strategies. In both of them,
when RFF generates a deterministic problem for FF, the goals of
this problem is a subset of states for which the policy is already
computed. In this case, one expects FF to reach neighbor states for
which the policy is available, instead of trying to reach perhaps far
goal states. The two strategies differ in how the set GFF of goal
states for FF is generated, as described below.

As our first strategy, we randomly choose k states from the pol-
icy graph and give them as goals to FF. The second strategy is a
selection of the best k states from the policy graph where the states
are ranked according to some criterion. In particular, we execute
the optional Line 20 of Algorithm 1 to optimize a local shortest
stochastic path problem restricted to the policy graph. In this op-
timization, we consider all terminal states as if they were unsolv-
able, in order to focus the locally optimized policy to the already
expanded states. We refer to the first strategy as RG (short for
RANDOMGOALS), and to the latter as BG (short for BESTGOALS).

Aggregating FF’s solution with Σπ.
With the input (s, GFF), suppose FF returns a plan of the form

〈â1, . . . , âk〉, where each âi, i = 1, . . . , k is a deterministic action
generated by the determinization strategy given the set A of actions

of the MDP (see Line 8). We developed two methods for aggregat-
ing the plan returned by FF into the current execution structure Σπ .

In the first aggregation method, RFF successively applies the de-
terministic actions of the plan 〈â1, . . . , âk〉 in the current state s,
and generates the state trajectory 〈s, s1, s2, . . . , sk〉. For each state
in the trajectory, RFF first expands the current state s′ (Line 12)
with the current action âi and sets the current policy π(s′) = ai

(Line 13). Note that RFF sets π(s′) with the original action ai

such that âi is a determinization of ai. Then, it adds the probabilis-
tic successors of the current state in the set of new terminal states
if they are not in the policy (Line 14).

Our second way to aggregate plans with a policy is shown on
line 20: RFF optionally optimizes the stochastic length of paths to
the goal states from the initial state. Here, RFF performs dynamic
programming [14] over Sπ by assuming the following. For each
state transition (s, a, s′) in Σπ , if s′ is a goal state then the cost
of a is 0; if s′ is a terminal state then the cost of a is 1/(1 − γ);
otherwise, the cost of a is 1.

The cost of an action that produce a terminal state corresponds to
the accumulated cost of an infinite trajectory in the MDP that never
reaches a goal state. This allows us to consider terminal states as
unsolvable states, so that the optimized policy will focus on the
already expanded states. By selecting the action costs as above,
RFF optimizes π in a way that increases the probability of success
while decreasing that of replanning during execution.

When RFF uses the stochastic optimization3 in order to do plan
aggregation, it does not update the current partial policy with the
deterministic actions in the plan returned by FF. In other words,
in this case, RFF uses FF as a heuristic that gives new interesting
states to explore, not as a planner that gives a course of action to
do. Thus, our implementation of the planner omits the Line 13.

Finally, RFF using the aggregation methods above does not nec-
essarily optimize the value function of the input MDP [14]. How-
ever, it is possible that RFF still will produce sub-optimal solutions
by computing optimal deterministic paths in the deterministic re-
laxation of the MDP if we use Metric-FF [10] instead of FF in
Line 8 of the Algorithm 1. In that case, the average accumulated
reward would not be optimal in many cases, but its value may be
closer to the optimal than the value of policies generated using FF.

Termination.
In Lines 3– 21, RFF computes successive paths from each ter-

minal state reachable with a probability higher than the threshold
ρ (Line 6).4 RFF terminates if either of the following conditions
are satisfied: the global probability to reach some terminal state is
less than the ρ, or there are no new terminal state to be added to the
execution structure Σπ and all terminal state in Σπ are expanded
already – i.e., T is the empty set (see Line 21). If RFF cannot ex-
pand the initial state, i.e., FF cannot generate a plan given s0 in the
first iteration of RFF, then we have T = ∅ immediately and the
planner returns failure at Line 23.

5. THEORETICAL ANALYSIS
Recall that RFF is not an optimization algorithm and that it tries

to find a solution to the following problem: « Does it exist a policy
whose probability of reaching to a goal state is non-zero, and whose

3
As the Bellman optimization can be quite expensive, when we do it, we

use it both for selecting the BestGoals (BG) to give to FF and updating the
policy. When we do not use the BG selection, then we implicitly use the
first option for plan aggregation.
4
Note that reactive approaches such as [17] terminate just after they gener-

ate an execution path; thus, they are a special case of RFF when ρ = 1.

1234

probability of replanning when executed is less than ρ? »
The following lemma establishes that RFF terminates, i.e. it al-

ways returns a policy in finite time for any value of ρ.

LEMMA 1. For every MDP planning problem P =
(M, s0, G, ρ), RFF terminates in finite time.

PROOF. At each iteration, RFF always expands some terminal
states in the execution structure, because the algorithm continues
while the probability to reach some terminal states is greater than
ρ. Because expanded terminal states are no more terminal by def-
inition, RFF expands new states at each iteration. Yet, the number
of states, and all the more of terminal states, is finite, so that the
number of iterations is finite as well.

THEOREM 1 (SOUNDNESS OF RFFMPO). For every MDP
planning problem P = (M, s0, G, ρ), every solution that RFFMPO

finds is correct.
PROOF. Let π̂ be a solution found by RFFMPO. Since FF is

sound, every path starting in any state in π̂ reaches a goal in the
determinized domain, and a fortiori with a non-zero probability in
the probabilistic original one. Therefore, π̂ contains as least one
path to a goal state from the initial state with a non-zero probability
(in fact, as many such paths as successful calls to FF). Moreover,
Monte-Carlo sampling is sound if the number of samples is large
enough. In this case, the probability that execution of π̂ leads to a
terminal state is less than ρ.

THEOREM 2 (COMPLETENESS OF RFFAO). For every MDP
planning problem P = (M, s0, G, ρ), if a solution exists, it is
found by RFFAO, otherwise RFFAO returns failure.

PROOF. First case: a solution exists, i.e. it exists a non-zero
probabilistic path from the initial state to goal states. In this case, it
exists a path from the initial state to goal states in the deterministic
domain determinized with the AO strategy. As FF is complete, it
will find such a path in the determinized domain. Therefore, RFF
will include this path in its execution structure, so that its solution
policy contains at least one path to goal states from the initial state
with a non-zero probability. As Monte-Carlo sampling is sound,
probability that this policy leads to a terminal state is less than ρ.

Second case: no solution exists. In this case, no solution exists in
the deterministic domain, so that FF which is complete, will return
an empty plan from the initial state. Therefore, RFF immediately
terminates by returning an empty policy.

COROLLARY 1 (SOUNDNESS OF RFFAO). For every MDP
planning problem P = (M, s0, G, ρ), every solution that RFFAO

finds is correct.
PROOF. Follows from the proofs of Theorems 1 and 2.

Note that RFFMPO is not complete in general. Indeed, in some
planning problems, all paths from the initial state to any goal states
could be associated to transitions whose outcome is never the most
probable (among all outcomes that have the same starting state for
each transition). Therefore, in this case, there is no path from the
initial state to goal states in the determinized domain: FF always
returns an empty plan so that RFF immediately returns an empty
policy, even if there is solution to the problem.

Finally, we establish a condition between the probability of re-
planning and that of success, i.e. of reaching to a goal state. This
proves that RFF implicitly controls the probability of success if
there are no unsolvable states in the stochastic planning domain. In
this case, the probability of replanning during execution, which is
directly controlled at planning time, is the complementary of the
probability of success, so that RFF returns a policy whose proba-
bility of reaching to a goal state is higher than 1 − ρ.

THEOREM 3. Let P = (M, s0, G, ρ) be an MDP planning
problem. If there are no unsolvable states in M , then the proba-
bility of success of any solution found by RFF is higher than 1− ρ.

PROOF. The execution of a policy can lead to three different
state classes: goal states, terminal states, and absorbing expanded
states from which it is impossible to reach to goal states (defined
as unsolvable). As a result, the execution of a policy found by RFF
can lead to only two different state classes if there are no unsolvable
states: goal states or terminal states. Therefore, the probability of
reaching to a terminal state during execution is the complementary
of the probability of reaching to a goal state.

6. EXPERIMENTS
We have implemented RFF in C++ and performed our experi-

ments on the planning domains from the “fully-observable proba-
bilistic (FOP) planning track” of the IPC-08 [3].

There were 7 planning domains in total at the FOP track of IPC-
08: namely, Blocks World, Exploding Blocks World, BoxWorld, 2-
Tireworlds (2TW), Schedule, Search-and-Rescue, and SysAdmin.
For each of the planning domain, there are 15 problem instances
used at the FOP, where the problems differ not only with the size of
the problems but also the costs and rewards of the underlying MDP
formulation of the above planning domains. All of the experiments
was done on a computer with a 2.4 GHz CPU and 2 GB memory
running Linux kernel 2.6.27 (Ubuntu 8.10).

Due to space limitations, we give an extensive summary of our
results below; the complete set of figures and discussions on the
results, as well as the planning domains, planning problems, and
our source code of RFF, are available at http://www.cs.umd.edu/
users/ukuter/rff/.

IPC-08 Experiments. In the IPC-08, a solution policy was simu-
lated 100 times in order to statistically assess the following: (1) the
percentage of simulated trajectories that reach a goal state (Cover-
age), where −10 means that the instance was not solved, (2) the
average number of time steps required to reach a goal state (Time),
and (3) the average accumulated reward gathered among all simu-
lated trajectories (Metric). Figure 2 shows the results.5

We used the following setup for RFF. The number N of samples
used by RFF’s Monte-Carlo sampling procedure was 10. We used
MPO relaxations of MDPs and both the PROBLEMGOALS (PG)
and the BESTGOALS (BG) strategies for selecting goals in calling
FF. When RFF calls FF if there are more than 100 states in the
partial policy, then the number |GFF| of goals given to FF is 100 in
the case of BG. We set the probability threshold to ρ = 0.2.

Overall, RFF solved many more planning problems across all
planning domains from the FOP of IPC-08 than other competitors,
with exception the Search-and-Rescue domain. We do not report
any results in this domain since the planning problems do not have
explicit goal states and RFF is not designed to solve such problems.
RFF did not perform well in the Exploding Blocks World prob-

lems. Results show that among the planning problems RFF could
solve, it was among the fastest planners. Using PROBLEMGOALS

goal-selection strategy, it was only able to solve 6 problem in-
stances out of the 15 problems. The reason is that may become
unsolvable during execution, and RFF may not detect this during
planning time. When RFF calls FF with a deterministic relaxation
of the MDP, FF generates a plan without any dead ends but when
that plan is executed, one of the blocks that appear in the goal con-
dition explodes: the planning problem becomes unsolvable.

5
We are not showing any data with the Metric criterion since all planners

performed similarly in terms of the average accumulated rewards.

1235

Figure 2: Coverage and Time (described in text) results for the planning problems from the Uncertainty Track of the IPC-08. The
parameter settings in RFF are given in text.

RFF was the only planner that was able to solve problem in-
stances from the BoxWorld domain. Note also that RFFwas able to
solve more (and larger) problem instances than FF-Replan, which
did not participate in IPC-08 but was the winner of the 2004 prob-
abilistic track. The reason is that RFF is able to reason, offline,
about the terminal states of a policy and the probability of a policy
will end up in such a state, when executed. This way it generates
policies that avoid executions leading into terminal states, whereas
FF-Replan do not reason about such states during planning time.

In terms of the average number of steps required to reach a goal
state in the benchmark problems, the results show that RFF was
among the best but there are no clear conclusions to be drawn from
the results shown in Figure 2.

Varying the Probability Threshold ρ. Table 1 shows the average
solution lengths generated by RFF, the average number of calls to
FF, and the average CPU times for RFF, as a function of RFF’s ρ.
In these experiments, we fixed the following parameters: The num-
ber N of samples used by RFF’s Monte-Carlo sampling procedure
was 10. We use MPO relaxations of MDPs and the PROBLEM-
GOALS strategy for selecting goals in calling FF. The time limit
for each experiment was 20 minutes.

The results showed that the number of times a policy generated
by RFF failed when executing that policy increases with ρ. This is
as expected since higher values of ρ mean that RFF will generate
policies that are more prone to replanning by the definition of ρ.
Moreover, these results confirm our Theorem 3, because

• in the domains without unsolvable states, the probability of suc-
cess is higher than 1− ρ, and it is even equal to 1 in most cases;

• in the Exploding BlocksWorld domain (only domain with un-
solvable states), the probability of success is generally not
higher than 1 − ρ.

In 2TW, Exploding Blocks World, and Blocks World domains,
it is interesting to note that all three ρ values we tried RFF with

lead to almost the same behavior (except from two instances of
the 2TW domain) in terms of number of problems solved and time
taken. This is surprising because the number of failures happened
in the executions is very different, but RFF achieved the same per-
formance with different ρ values. The reason is that RFF does not
return a policy when the probability of replanning for that policy is
ρ; instead, it may return any policy whose probability of replanning
is less than or equal to ρ. RFF can generate the same solutions for
the different values of ρ in our experiments. Thus, the results show
similar behavior for different values of ρ in Table 1.

In BoxWorld and Schedule, smaller values for ρ made RFF fail
in trying to solve large instances. The small differences in the per-
formance of RFF with varying values of ρ is due to the fact that the
goals given to FF are the same as the goals from the original prob-
lem, so RFF does not take advantage having more off-line planning.
(Recall that in off-line planning, we can choose to merge policies
by choosing RANDOMGOALS or BESTGOALS strategies).

Different Goal-Selection Strategies. Table 2 shows the results
in all IPC-08 domains mentioned above, comparing our three dif-
ferent goal-selection strategies in RFF: PROBLEMGOALS (PG),
RANDOMGOALS (RG), and BESTGOALS (BG). We fixed the
number of Monte-Carlo simulations per call for the sampling rou-
tine in RFF to 10. We used ρ = 0.2. When RFF calls FF, if
there are more than 100 states in the partial policy, then the number
|GFF| of goals given to FF is 100 in the cases of the BG and RG.
Otherwise, it is the maximum number given the selection mecha-
nisms in these strategies. Note that in the case of PG, GFF = G.
As above, we used the MOSTPROBABLEOUTCOME (MPO) relax-
ations of the MDPs. Finally, we used 60 minutes as our time limit.

In our experiments, the PG strategy was clearly not the best one,
it solved less number of problems in almost every domain. The
BG strategy generally produced solutions with better quality than
the RG strategy, and it took more time using the former compared
to the latter, this mainly because of the way plans are aggregated:
recall that in the BG strategy, the action to apply in states are com-

1236

Table 1: RFF with varying probability threshold ρ. The parameter
settings in RFF are given in text.

DOM PB % success sol. length (avg.) total time (avg.) # calls to RFF
ρ:0.1ρ:0.4ρ:0.7 ρ:0.1 ρ:0.4 ρ:0.7 ρ :0.1 ρ:0.4 ρ:0.7 ρ:0.1ρ:0.4 ρ:0.7

2
-t

ir
ew

o
rl

d
s

01 100 100 100 6.14 5.97 6.23 0.034 0.028 0.025 1 3 6

02 100 100 100 11.83 11.71 11.4 0.149 0.135 0.115 8 14 18

03 100 100 100 19.43 19.12 19.49 0.863 0.849 1.482 17 52 72

04 100 100 100 27.1 27.24 26.34 9.714 175.0981149.11 44 106 176

05 100 — — 34.46 — — 549.31 — — 48 — —

05-10 — — — — — — — — — — — —

11 100 100 100 5.08 5.2 5.2 2.514 2.425 2.48 1 2 2

12 100 100 100 3 3 3 1.639 1.665 1.726 1 1 1

13 100 100 100 5.82 5.97 6.22 20.751 21.256 21.015 1 3 4

14 100 100 100 2 2 2 10.981 9.395 9.049 1 1 1

15 — — — — — — — — — — — —

b
lo

ck
sw

o
rl

d

01 100 100 100 20.03 20.37 20.52 2.699 17.469 0.507 1 1 1

02 100 100 100 21.56 21.56 20.47 0.032 0.015 0.018 1 1 1

03 100 100 100 20.47 20.47 20.47 0.019 0.017 0.017 1 1 1

04 100 100 100 20.47 20.96 21.02 0.02 0.021 0.017 1 1 2

05 100 100 100 47.96 48.5 47.7 1.311 1.373 2.739 2 11 22

06 100 100 100 47.62 47.91 48.11 1.331 1.056 2.417 2 11 22

07 100 100 100 47.24 47.91 47.94 1.368 1.057 3.309 2 12 17

08 100 100 100 47.8 47.73 47.19 1.308 1.081 3.375 1 12 21

09 100 100 100 37.18 37.05 38.32 1.028 1.056 1.141 1 4 9

10 100 100 100 37.83 37.26 37.9 0.993 0.986 1.148 1 4 10

11 100 100 100 37.04 38.53 36 1.096 0.993 1.038 1 3 9

12 100 100 100 38.01 37.48 38.11 1.07 1.05 1.055 1 3 7

12-15 — — — — — — — — — — — —

b
o
x
w

o
rl

d

01 100 100 100 29.07 28.99 28.94 17.386 8.066 9.738 9 40 49

02 100 100 100 28.94 28.94 28.79 11.851 6.244 8.274 8 28 43

03 100 100 100 29.06 28.83 29 18.107 6.132 7.969 10 33 44

04 100 100 100 35.33 35.57 35.17 482.728114.038 59.427 23 80 101

05 100 100 100 35.11 35.8 35.46 318.709 57.352 48.936 17 70 88

06-07 — — — — — — — — — — — —

08 — 100 100 — 57.49 58.63 — 550.75 334.789 — 107 222

09 — 100 100 — 58.44 58 — 667.635269.167 — 100 194

10-15 — — — — — — — — — — — —

ex
-b

lo
ck

sw
o
rl

d

01 58 55 54 424.64 454.4 464.32 0.045 0.127 0.038 2 9 5

02 25 18 18 753 822.16 822.16 0.157 0.092 0.269 4 7 12

03 39 46 45 613.9 544.6 554.5 0.383 0.298 0.197 8 12 11

04 48 60 59 526.72 408.4 418.26 0.122 0.15 0.255 5 14 22

05 100 100 100 6 6 6 0.024 0.022 0.022 3 4 4

06 98 97 97 32.56 42.54 42.54 0.226 0.134 0.16 6 15 19

07 56 64 58 446.72 367.68 426.96 0.169 0.121 0.31 2 9 13

08 10 14 10 902.4 863.36 902.4 1.121 0.712 0.766 10 21 20

09 9 15 9 912.28 853.86 912.3 2.316 1.463 1.252 20 34 30

10 0 2 1 1000 980.72 990.36 2.332 1.319 1.722 9 24 26

11 5 8 9 951.6 922.56 912.88 3.745 1.199 2.294 32 23 37

12 1 4 2 990.38 961.52 980.76 6.238 1.858 1.394 27 28 23

13 9 10 8 914.72 905.84 924.62 15.212 5.947 3.5 23 30 40

14 1 2 1 990.48 981.1 990.58 437.651493.033230.651 38 30 37

15 9 8 4 913.76 923.18 961.52 26.053 19.327 21.228 39 51 71

sc
h
ed

u
le

01 100 100 100 34.08 33.03 33.03 0.201 0.017 0.017 1 1 1

02 100 100 100 51.57 45.54 41.7 0.018 0.017 0.017 1 1 1

03 100 100 100 98.16 98.16 98.16 0.017 0.017 0.018 1 1 1

04 96 96 93 92.08 92.13 127.44 0.449 1 0.582 2 18 11

05 87 85 89 213.66 241.3 209.62 1.097 0.427 0.963 11 8 17

06 70 60 89 464.72 594.35 209.62 207.154305.934 0.963 96 270 17

07 58 64 89 579.8 568.7 209.62 215.833389.826 0.963 82 193 17

08-15 — — — — — — — — — — — —

s-
S

L
P

01 100 100 100 6.49 6.86 7.16 0.327 0.286 0.377 2 8 11

02 100 100 100 8.56 9.01 8.62 4.037 5.651 3.986 3 13 18

03 100 100 100 12.14 11.68 10.43 53.239 41.606 41.194 5 20 33

04-15 — — — — — — — — — — — —

puted using Bellman optimization, whereas in others, this is the last
action returned by calls to FF. However, BG failed to solve as many
domains as the RG strategy, due to the overhead in the calculation,
causing more time overflows (except in the 2TW domain).

As a summary, using PG in RFF resulted in solving a whole new
problem for every terminal state (or for every policy failure if we
consider a purely repairing approach as in FF-replan), which is
clearly not a good idea for large domains. On the other hand, the
BG strategy provided good results, as it reuses previous policy and
optimizes it, but its overhead can be significant for large domains.

Different Ways of Determinizing MDPs. Table 3 shows num-
ber of successful runs, averaged number of steps taken to reach the
goal, and averaged time for solving the problem for MOSTPROBA-
BLEOUTCOME (MPO) and ALLOUTCOMES (AO) relaxations of
MDPs. We fixed the number of Monte-Carlo simulations per the
call of the sampling routine in RFF to 10. We used ρ = 0.2. The
goals GFF that FF was given each time it was called are selected
the same as above. The time limit was 20 minutes.
RFF using AO calls FF to solve much larger problems; for ex-

ample, in the boxworld domain, RFF was not able to solve any
problem instance using AO, whereas it generated good results with

Table 2: RFF using the goal-selection strategies PROBLEMGOALS(PG),
RANDOM GOALS (RG), and BEST GOALS (BG). The parameter set-
tings in RFF are given in text.

DM PB % coverage solution length (avg.) total time (avg.)
PG RG BG PG RG BG PG RG BG

2
-t

ir
ew

o
rl

d
s

01 100 100 100 6.03 7.61 7.61 0.025 0.099 0.098

02 100 40 100 12.27 606.05 22 0.126 1.795 1.685

03 100 21 100 18.93 794.66 32.32 0.704 11.993 3.992

04 100 6 100 27.02 941.89 44.47 6.943 79.702 9.862

05 100 1 92 34.62 990.53 132.46 149.433220.661 23.375
06 3 — 100 971.32 — 68.17 948.315 — 45.366
07 1 — 100 990.63 — 79.48 1105.9 — 74.832
08 1 — 100 990.65 — 91.44 1136.5 — 121.78
09 — — 100 — — 101.81 — — 201.885
10 — — 100 — — 115.57 — — 320.598
11 100 79 79 4.96 214.74 214.74 2.309 2.67 5.589

12 100 100 100 3 3 3 1.501 1.507 1.5
13 100 55 56 6.34 454.05 444.06 19.493 23.905 34.166

14 100 100 100 2 2 2 8.548 8.529 8.526
15 — — — — — — — — —

b
lo

ck
sw

o
rl

d

01 100 100 100 20.44 21.85 21.85 0.162 0.03 0.028
02 100 100 100 20.96 21.85 21.85 0.025 0.03 0.03

03 100 100 100 20.96 21.85 21.85 0.017 0.03 0.03

04 100 100 100 20.96 21.85 21.85 0.015 0.03 0.03

05 100 100 100 46.96 64.8 64.18 1.043 1.537 1.546

06 100 100 100 46.82 65.27 65.24 1.03 1.537 1.556

07 100 100 100 48.35 64.93 65.42 1.088 1.55 1.566

08 100 100 100 47.83 64.5 64.41 1.06 1.545 1.542

09 100 100 100 36.96 41.39 40.97 0.947 1.551 1.546

10 100 100 100 37.54 40.43 40.85 0.966 1.554 1.556

11 100 100 100 36.83 40.01 40.69 0.963 1.549 1.548

12 100 100 100 36.87 40.6 40.26 0.964 1.551 1.549

13 — 100 — — 170.25 — — 108.975 —

14 — 100 — — 182.02 — — 109.946 —

15 — 100 — — 180.83 — — 110.4 —

b
o
x
w

o
rl

d

01 100 100 100 29.07 30.55 30.32 11.082 3.293 3.022
02 100 100 100 28.72 30.55 30.53 12.187 2.766 3.184

03 100 100 100 29.15 30.65 30.82 9.564 3.373 2.791
04 100 100 100 35.02 36.75 36.09 99.244 14.415 15.521

05 100 100 100 35.34 36.47 36.1 100.654 13.587 16.693

06 — 100 100 — 74.06 63.55 — 90.983 188.426

07 — 100 100 — 72.82 64.63 — 96.223 181.199

08 100 100 100 57.02 59.82 56.62 639.113 44.642 58.707

09 100 100 100 58.44 60.06 57.62 673.589 43.558 45.641

10 — 100 100 — 84.16 73.75 — 150.637318.923

11 — 100 100 — 85.89 73.83 — 168.326321.594

12 — 100 100 — 84.3 73.19 — 157.767293.149

13 — 100 — — 209.76 — — 2555.03 —

14 — 100 — — 202.54 — — 2024.53 —

15 — 100 — — 205.42 — — 2122.47 —

ex
-b

lo
ck

sw
o
rl

d

01 50 67 67 504 335.36 335.36 0.078 0.081 0.081

02 16 26 26 841.92 743.12 743.12 0.208 0.341 0.341

03 31 34 35 693.1 663.4 653.5 0.104 0.361 0.132

04 54 67 66 467.56 339.38 349.24 0.108 0.69 0.384

05 100 100 100 6 6 6 0.023 0.038 0.038

06 97 95 95 42.52 62.12 62.28 0.225 1.603 1.616

07 63 60 56 377.56 407.2 446.72 0.436 0.371 0.716

08 19 10 11 814.56 902.4 892.64 1.27 2.794 26.424

09 17 7 9 834.34 931.76 912.32 1.448 8.188 20.802

10 1 0 1 990.36 1000 990.36 0.961 14.686 38.013

11 12 4 4 883.84 961.28 961.28 2.192 16.872 34.311

12 2 0 1 980.76 1000 990.38 2.762 22.495 63.424

13 10 13 13 905.52 877.12 878.28 9.477 265.081247.439

14 3 3 2 971.54 971.54 981.18 266.475316.221349.997

15 10 8 6 904.16 923.06 942.38 16.355 83.639 92.11

sc
h
ed

u
le

01 100 100 100 31.65 32.76 32.76 0.231 0.016 0.016
02 100 100 100 46.71 46.71 46.71 0.035 0.017 0.017
03 100 100 100 107.25 108.78 108.78 0.015 0.017 0.018

04 97 98 98 82.58 75.49 75.49 0.266 0.094 0.094
05 89 93 89 208.96 179.19 207.47 0.398 0.121 0.126

06 67 14 13 556.71 890.47 913.16 241.181 3.594 3.073
07 57 12 13 572.72 914.23 911.72 216.666 3.26 3.77

08 68 20 19 525.87 857.32 857.12 669.763 6.842 6.153
09 — 1 1 — 993.34 991.23 — 51.378 21.693
10 — 15 2 — 908.1 994.61 — 297.108 21.506

11-15 — — — — — — — — —

MPO. In all other domains, MPO relaxations generally solve more
problems in less time, with a good solution quality. This is because
some of the problems are probabilistic versions of deterministic
problems, where the most probable outcome is the desired one, and
other are failures. In such cases, our results suggest that MPO re-
laxations of MDPs are worked quite well for RFF.

7. CONCLUSIONS AND FUTURE WORK
We have described RFF, our planning algorithm that (1) deter-

minizes the given MDP model into a classical planning problem;
(2) generates partial policies off-line by producing solution plans to
the classical planning problem and incrementally aggregating them
into a policy, and (3) uses sequential Monte-Carlo (MC) simula-
tions of the partial policies before execution, in order to assess the

1237

Table 3: RFF with different method for relaxations of MDPs. MPO:
Most Probable Outcome; AO: All Outcomes. The parameter settings
in RFF are given in text.

DM. PB. %coverage sol. length (avg.) total time (avg.)
MPO AO MPO AO MPO AO

2
-t

ir
ew

o
rl

d
s

p01 71 53 294.84 471.06 0.03 0.009
p02 60 10 410.11 900.4 2.015 0.021
p03 33 1 677.96 990.06 43.598 0.054
p04 9 0 912.79 1000 70.067 0.101

p05 3 1 971.02 990.1 268.498 0.373
p06 — — — — — —

p07 1 0 990.6 1000 349.217 1.046
p11 79 16 214.74 840.32 6.254 5.677
p12 100 23 3 770.46 1.517 11.851

p13 42 19 583.01 810.38 52.952 35.627
p14 100 20 2 800.4 8.479 12.919

p15 — — — — — —

b
lo

ck
sw

o
rl

d

p01 100 100 22.08 15.83 0.211 0.028
p02 100 100 21.3 15.28 0.039 0.028
p03 100 100 21.3 15.28 0.03 0.028
p04 100 100 21.3 15.28 0.027 0.029

p05 100 5 63.93 981.79 1.57 1.603

p06 100 2 63.2 995.12 1.588 1.777

p07 100 6 64.74 977.06 1.689 1.912

p08 100 3 63.34 983.35 1.86 1.6
p09 100 32 41.21 859.16 1.567 6.813

p10 100 5 42.04 984.47 1.559 7.577

p11 100 6 40.36 977.17 1.567 7.584

p12 100 4 40.6 984.11 1.573 7.644

p13 100 — 175.28 — 110.461 58.752

p14 100 — 176.52 — 108.93 65.155

p15 100 — 176.89 — 110.213 59.18

b
o
x
w

o
rl

d

p01 100 — 30.47 — 2.914 —

p02 100 — 30.75 — 3.177 —

p03 100 — 30.58 — 2.803 —

p04 100 — 37.01 — 14.59 —

p05 100 — 36.79 — 14.084 —

p06 100 — 73.95 — 87.748 —

p07 100 — 73.56 — 97.182 —

p08 100 — 60.08 — 42.351 —

p09 100 — 60.58 — 45.909 —

p10 100 — 85.9 — 151.257 —

p11 100 — 86.74 — 169.494 —

p12 100 — 85.87 — 141.396 —

p13 23 — 200.304 — 1183.44 —

p14 29 — 202.276 — 1181.42 —

p15 25 — 200.68 — 1179.23 —

ex
-b

lo
ck

sw
o
rl

d

p01 56 43 444.48 573.44 0.07 0.148
p02 20 23 802.4 772.76 0.231 0.139
p03 42 30 584.2 706.56 0.127 0.224

p04 63 62 378.82 397.64 0.415 0.619

p05 100 100 6 9.62 0.037 0.028
p06 97 91 42.24 115.02 1.567 2.336

p07 53 95 476.36 105.74 0.642 0.604
p08 10 9 902.4 915.78 2.547 3.554

p09 13 15 873.32 854.98 9.139 10.028

p10 0 1 1000 990.34 8.642 9.202

p11 5 5 951.6 952.12 26.858 24.342
p12 3 — 971.14 — 24.875 —

p13 11 — 896.38 — 190.348 —

p14 2 — 981 — 299.167 —

p15 6 — 942.44 — 44.532 —

sc
h
ed

u
le

p01 100 100 28.71 28.89 0.157 0.013
p02 100 100 35.88 49.32 0.018 0.013
p03 100 100 103.23 103.59 0.015 0.015
p04 97 93 91.16 126.84 0.112 0.093
p05 89 86 214.07 236.73 0.138 0.128
p06 16 18 904.78 872.79 3.337 14.359

p07 18 16 857.8 892.91 3.662 14.317

p08 50 20 627.2 864.03 148.11 34.385
p09 2 — 994.73 — 56.195 —

p10 2 — 988.76 — 63.899 —

p11-p15 — — — — — —

probability of replanning for a policy. This way, RFF assesses the
probability of replanning for a policy and generates policies whose
such probability is below a given threshold ρ.

We have provided theorems showing the termination, soundness,
and completeness properties of RFF. We also showed that policies
returned by RFF reach to goal states with a probability higher than
1 − ρ if there are no unsolvable states in the MDP.

We have done an extensive experimental study with RFF. RFF
outperformed the planning systems that participated to the fully-
observable probabilistic track in the 2008 International Planning
Competition. In several additional experiments, we analyzed RFF’s
performance with different strategies for selecting goals for FF, for
generating deterministic relaxations of the input MDPs, and the ef-
fect of varying threshold value for probability of replanning. RFF
was best using deterministic relaxations of MDPs via the most
probable outcomes of probabilistic actions. Furthermore, RFF

solved the benchmark planning problems very effectively when the
algorithm called FF with the best previously-explored states from
the policy as goals. This enabled RFF to generate near-optimal
policies while favoring small modifications to the current policy
instead of exploring bad execution paths.

Our primary objective is to generalize our planning framework to
hybrid MDPs in which there are both discrete and continuous val-
ued state variables. The factored MDP representations in RFF will
be the basis of such generalizations. We are currently investigating
which classical planners are suitable to incorporate in RFF.

8. REFERENCES
[1] B. Bonet and H. Geffner. Labeled RTDP: Improving the

Convergence of Real-Time Dynamic Programming. In
ICAPS-03, 2003.

[2] C. Boutilier, R. Dearden, and M. Goldszmidt. Stochastic
dynamic programming with factored representations.
Artificial Intelligence, 121(1-2):49–107, 2000.

[3] D. Bryce and O. Buffet. The uncertainty part of the 2008
international planning competition, 2008.
http://ippc-2008.loria.fr/wiki/index.php/Main_Page.

[4] O. Buffet and D. Aberdeen. FF+FPG: Guiding a
policy-gradient planner. In Proceedings of ICAPS, 2007.

[5] D. P. de Farias and B. Van Roy. The linear programming
approach to approximate dynamic programming. Operations
Research, 51(6):850–865, 2003.

[6] R. Dearden and C. Boutilier. Abstraction and approximate
decision-theoretic planning. Artificial Intelligence,
89(1-2):219–283, 1997.

[7] M. Ghallab, D. Nau, and P. Traverso. Automated Planning:
Theory and Practice. Morgan Kaufmann, May 2004.

[8] R. Givan, T. Dean, and M. Greig. Equivalence notions and
model minimization in markov decision processes. Artificial
Intelligence, 147((1-2)):163–233, 2003.

[9] E. A. Hansen and S. Zilberstein. LAO*: A heuristic search
algorithm that finds solutions with loops. Artificial
Intelligence, 129(1-2):35–62, 2001.

[10] J. Hoffmann. The metric-FF planning system: Translating
ignoring delete lists to numerical state variables. JAIR, 20,
2003.

[11] J. Hoffmann and B. Nebel. The FF planning system: Fast
plan generation through heuristic search. JAIR, 14:253–302,
2001.

[12] E. Keyder and H. Geffner. The hmdp planner for planning
with probabilities, 2008.

[13] I. Little and S. Thiébaux. Concurrent Probabilistic Planning
in the Graphplan Framework. In ICAPS, 2006.

[14] M. Puterman. Markov Decision Processes. Wiley, 1994.

[15] F. Teichteil-Königsbuch and P. Fabiani. A multi-thread
decisional architecture for real-time planning under
uncertainty. In 3rd ICAPS’07 Workshop on Planning and
Plan Execution for Real-World Systems, 2007.

[16] M. Trick and S. Zin. Spline approximations to value
functions: A linear programming approach. Macroeconomic
Dynamics, 1:255–277, 1997.

[17] S. Yoon, A. Fern, and R. Givan. FF-Replan: A baseline for
probabilistic planning. In ICAPS-07, 2007.

[18] S. Yoon, A. Fern, R. Givan, and S. Kambhampati.
Probabilistic planning via determinization in hindsight. In
AAAI-08, 2008.

1238

